朴素Dijkstra学习笔记
适用范围
$$O(N^2)$$
N为点数
思想解释
- dist表示点离起点的距离,s存储每个点离起点的最短值
- 1.dist[1] = 0; // 表示1到起点距离为0
- 2.遍历所有点,找到不属于s的点中离起点最近的点,记录为t
- 将其存入s中
- 用t这一点更新其他点离起点的距离
例题
https://www.acwing.com/problem/content/851/
AC代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 510;
int dist[N];
bool s[N];
int g[N][N];
int n, m;
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 0; i < n; i ++)
{
int t = -1;
for (int j = 1; j <= n; j++)
if(!s[j] && (t == -1 || dist[t] > dist[j]))
t = j;
s[t] = true;
for (int j = 1; j <= n; j ++)
dist[j] = min(dist[j], dist[t] + g[t][j]);
}
if(dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
memset(g, 0x3f, sizeof g);
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i ++)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b] = min(g[a][b], c);
}
printf("%d",dijkstra());
return 0;
}